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CP 83000, Hermosillo, Sonora, Mexico
2 Departamento de Investigación en Fı́sica, Universidad de Sonora, Apartado Postal 5-088,
CP 83190, Hermosillo, Sonora, Mexico
3 Departamento de Fı́sica, Universidad de Sonora, Apartado Postal 1626, CP 83000,
Hermosillo, Sonora, Mexico

Received 24 May 2007, in final form 29 November 2007
Published 8 January 2008
Online at stacks.iop.org/JPhysCM/20/045203

Abstract
The differential cross-section for an electron Raman scattering process in a semiconductor
quantum wire in the presence of an external magnetic field perpendicular to the plane of
confinement is calculated. We assume a single parabolic conduction band. The emission spectra
for different scattering configurations and the selection rules for the processes are studied.
Singularities in the spectra are found and interpreted. The electron Raman scattering studied
here can be used to provide direct information about the electron band and subband structure of
these confinement systems. The magnetic field distribution is considered constant with value B0

inside the wire and zero outside.

1. Introduction

The recent developments in nanometric fabrication techniques
have made possible to obtain several nanostructures such as
quantum wells, quantum dots, quantum wires, etc, which
have allowed the development of new electronic devices and
given rise to a revolution in electronics and optoelectronics.
Basically, most of the physical properties presented by these
nanostructures are implicitly contained in the wavefunction,
and any change due to the confinement, or an external
perturbation like the presence of a magnetic field, produces
a change in the wavefunction which corresponds to a change
in the physical properties of the system [1]. The application
of an inhomogeneous magnetic field in these confined
systems allowed us to obtain additional information about the
behavior of the new subband structure mainly because of the
confinement as well as the magnetic field, which gives rise to
new optical, electronic and transport properties of the carriers
in these systems [2–7].

Because of its precision, Raman scattering is a
useful technique for studying the electronic structure of
nanostructures, considering different polarizations of incident
and emitted radiation [8–10]. Analysis of the differential

cross-section of a Raman scattering process allows us to
determine the subband structure of nanostructured systems by
a direct inspection of the singularity positions in the spectra,
considering the selection rules of transitions of the carriers
participating in the interaction with different polarizations of
the incident and emitted light. In general, the differential
cross-section shows singularities related to intersubband and
intraband transitions; in our case only intersubband transitions
are considered. As it is shown, the result depends on the
scattering configurations and the structure of singularities
depends on the incident or emitted photon polarizations. The
electron Raman scattering (ERS) in quantum well, quantum
wire and quantum dot systems considering interband and
intrasubband transitions with and without the participation of
confinement phonons, but without the presence of an external
magnetic field, has been studied in [11–16]; the case of a
bulk semiconductor, considering the presence of electric and
magnetic fields, was studied in [17–19].

We assume the electron confinement in the conduction
band within a semiconductor quantum wire (QWW) at T =
0 K. The conduction band is considered parabolic, and it splits
into a subband system due to the confinement and the presence
of the magnetic field. The approximation of a parabolic band

0953-8984/08/045203+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/04/045203
http://stacks.iop.org/JPhysCM/20/045203


J. Phys.: Condens. Matter 20 (2008) 045203 R Betancourt-Riera et al

is commonly used in the II–VI and III–V polar semiconductors
when one works near to the center of the Brillouin zone in
the reduced band scheme. Under these dynamic conditions
the potential barriers do not imply interband transitions, so
the nanostructures can be treated in the envelope function and
effective mass approximations [11, 15].

Hashimzade et al [6] also calculated the interband
electron Raman scattering in a quantum wire in a transverse
magnetic field using a GaAs/AlAs matrix and a model which
characterizes the quantum wire by a parabolic potential for
electron–hole pairs. Their consideration of a magnetic field
applied in the plane of the confinement gives selection rules
different from those obtained in our work, because we have
considered a magnetic field applied parallel to the axis of the
wire.

In [9, 10] a theory of ERS for several low-dimensional
structures was developed. In these cases, the conduction
band was considered to be completely unoccupied, and for
this reason the radiation field creates an electron–hole pair
or an exciton by means of an electron interband transition
involving the crystal valence and conduction bands. In
this paper we consider that the conduction band is partially
occupied; for this reason we have a confined electron in a
QWW and therefore intersubband transitions can take place.
This new situation was not considered for a QWW, although
in [20, 21] similar systems were studied. When a carrier is
present in the conduction band, the selection rules are the
same for the transition associated with the emitted and incident
radiation, which is different from the Raman scattering process
mentioned above.

In this work we present a model of electron Raman
scattering in a QWW in the presence of an external
magnetic field. These systems can be fabricated from
GaAs/Al0.35Ga0.75As by using high-resolution electron-beam
lithography techniques. The intersubband ERS processes
can be qualitatively described in the following way: first an
electron in the conduction band absorbs a photon of incident
radiation of energy h̄ωl , then the electron emits a photon of
secondary radiation of energy h̄ωs due to a new intersubband
transition [11].

2. Model and solution of Schrödinger’s equation

The problem of determining the stationary states of an electron
in a QWW system in the envelope function approximation
leads to the solution of the Schrödinger equation. We consider
a QWW of circular cross-section with radius ρ0 and length
L, which is in the presence of an external inhomogeneous
magnetic field distribution in the z-direction. The distribution
of the magnetic field, vector potential and confinement
potential are given by:

B, A, Vc (ρ)

=
⎧
⎨

⎩

B0ez,
1
2 B0êθ , 0; 0 � ρ � ρ0

0,
1

2ρ
B2

0ρ
2
0 êθ , V0; ρ0 � ρ < ∞

where êz (êθ ) is the unit vector in the z-direction (θ -direction).
Notice that ∇ × A = B for ρ � ρ0 and ∇ × A = 0 outside of

the QWW. As required by this field distribution the following
gauge ∇ · A = 0 is fulfilled. Then the Hamiltonian can be
written as

Ĥ = − h̄2

2μ
∇2 + q Aθ

μc

Lz

ρ
+ q2

2μc2
A2

θ + Vc (ρ)

where μ is the electron effective mass, e the absolute value of
charge of the electrons, Aθ the component θ of the magnetic
vector potential associated with the magnetic field distribution
and Lz = −ih̄ ∂

∂θ
the component z of the angular momentum.

The differential equation in each region of a QWW
depends on the magnetic field distribution [2]. As is
well known, the symmetry of the Hamiltonian allows
the Schrödinger equation to be separable in cylindrical
coordinates; therefore the total wavefunction has the following
form

� (ρ, θ) = exp
[
i (mθ − kzz)

]

√
2π L

u0 (ρ)

×

⎧
⎪⎪⎨

⎪⎪⎩

A exp
(
− x

2

)
x

|m|
2 F (β, 1 + |m| , x) ρ � ρ0

B K|v|
(

γ

ρ0
ρ

)

ρ > ρ0

where

x = ρ2

2ρ2
B

, β = − Eρ

h̄ω0
+ |m| − m + 1

2

v = m + ρ2
0

2ρ2
B

and γ =
√

2μ1

h̄2

(
V0 − Eρ

)

u0(ρ) is the electron Bloch function in the band and m =
0,±1,±2, . . . is the magnetic quantum number. ω0 = eB0

μ2c is

the cyclotron frequency, ρB =
√

h̄
μ2ω0

is the confining magnetic

length, F is the standard hypergeometric function and K|v|
is the modified Bessel function of the second kind and order
|v|. Considering the continuity of the wavefunction � and
the current density 1

μ
∂�
∂ρ

at the interface we can calculate the
constants A and B; where μ1 (μ2) is the electron effective mass
in the outside (inside) of the QWW.

Finally the electron energy for this system is

Em (kz) = Eρ + h̄2

2μ
k2

z + μB B0g∗ms, (1)

g∗ is the Landé factor of the electron in the band, μB is the Bohr
magneton and ms = ± 1

2 for the two different spin states [22].
The electron energy due to the confinement, Eρ , is obtained
from the following secular equation

μ1x0 K|v|
(

γ

ρ0
ρ

) [( |m|
x0

− 1

)

F (β, 1 + |m| , x0)

+ F ′ (β, 1 + |m| , x0)

]

− μ2γ K ′
|v| (γ )

× F (β, 1 + |m| , x0) = 0 (2)

where x0 = ρ2
0

2ρ2
B

.
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3. Raman cross-section

The differential cross-section for electron Raman scattering in
a volume per unit solid angle for incoming light of frequency
ωl and scattered light of frequency ωs is given by

d2σ

dωs d�
= V 2ω2

s η(ωs)

8π3c4η(ωl)
W (ωs, es) (3)

where η(ω) is the refraction index as a function of the radiation
frequency, es is the unit polarization vector for the emitted
secondary radiation, c is the light velocity in a vacuum and
W (ωs, es) is the transition rate for the emission of secondary
radiation (with frequency ωs and polarization es) calculated
according to Fermi’s golden rule:

W (ωs, es) = 2π

h̄

∑

f

∣
∣
∣
∣

∑

a

〈 f |Ĥs|a〉〈a|Ĥl|i〉
(Ei − Ea + ia)

+
∑

b

〈 f |Ĥl|b〉〈b|Ĥs|i〉
(Ei − Eb + ib)

∣
∣
∣
∣

2

δ(E f − Ei) (4)

|i〉 and | f 〉 are the initial and final states with energies Ei and
E f , |a〉 and |b〉 are the intermediate states with energies Ea and
Eb, and a and b are the lifetimes [11, 14]. The second terms
of equation (4) are the so-called interference diagrams

∑

b

〈 f |Ĥl|b〉〈b|Ĥs|i〉
(Ei − Eb + ib)

.

In previous works [12, 16] the contribution of the interference
diagrams was neglected because the gap was larger than the
band offset of the electron–hole pairs [9]. In the present
work these terms must be considered because they do affect
the excitation spectra; however, the information given by the
excitation spectra is similar to that from the emission spectra,
therefore a corresponding graph was not included.

The Hamiltonian operator for the radiation field has the
form

Ĥr = |e|
μ

√
2π h̄

V ωr

(
er · p̂

)
, p̂ = −ih̄∇, (5)

where Ĥr is in the dipole approximation with frequency ωr ,

and er is the light polarization unit vector; the subindex r =
l(s) indicates the incident (secondary) radiation. The dipole
approximation is commonly used in electron Raman scattering
and resonant Raman scattering in nanostructures [9–16]. This
approximation is valid as long as the radiation wavelength is
much larger than the radius of the wire. In this work we have
considered that the radius of wire is less than 100 Å. The effect
of reduced dimensionality on the free carrier absorption and the
selection rules for intersubband transition have been discussed
in [9], and there it is shown that the ERS can only take place in
the confinement direction.

For the calculation of the differential cross-section given
by equation (3) we need to calculate the matrix elements
appearing in equation (4). For the case of the radiation field
we use the condition kz = 0 [15]; thus, by considering the
equation (5) and the wavefunction corresponding to a QWW
the following matrix elements are obtained:

〈� ′|Ĥr |� ′′〉± = −ih̄
|e|
μ0

√
2π h̄

V ωr

er · e±
ρ0

T±
(
m ′, m ′′) , (6)

where

T±
(
m ′, m ′′)

= ρ0

[
μ0

μ1
〈� ′

outside |∇±|� ′′
outside〉+

μ0

μ1
〈� ′

inside |∇±|� ′′
inside〉

]

,

= [
Im′,m′′ ± m ′′IIm′,m′′

]
δm′±1,m′′δk′

z ,k
′′
z

μ0 is the free electron mass and ∇± = exp(±iθ)√
2

( ∂
∂ρ

± i
ρ

∂
∂θ

). The
explicit form of Im′,m′′ and IIm′,m′′ is very complicated and their
expressions can be calculated following the method reported
in [16]. As can be observed, the emission or absorption of
one photon can only take place between consecutive states
of the quantum number m, according to the selection rules
m ′′ = m ′ ± 1.

In the initial state we have an electron in a conduction
subband and an incident radiation photon; for the final state
we have an electron in the other conduction subband and a
secondary radiation photon:

Ei = h̄ωl + Em′′ (kz) and E f = h̄ωs + Em (kz) .

(7)
For the intermediate states, we have two possibilities [11]:
(a) the electron absorbs the incident photon and later emits
the secondary radiation photon or (b) the electron emits the
secondary radiation photon and later absorbs the incident
photon, then we can write

Ea = Em′(kz) and Eb = h̄ωl + h̄ωs + Em′(kz). (8)

Using equations (1)–(8) we obtain four different
contributions to the DCS, depending on the polarization of
the incident and emitted radiation; finally we can write the
differential cross-section as:
[

d2σ

dωsd�

]

±±
= η(ωs)

η(ωl)

(e

c

)4 h̄

πμ2
0ρ0

ωs

ωl
 f

(
σ±

s · σ±
l

)2

×
∑

n,n′′

∑

m

|M±±|2
[h̄ωl−h̄ωs+Eρ(m+2, n′′)−Eρ(m, n)]2 + 2

f

,

(9)

and
[

d2σ

dωs d�

]

±∓
= η(ωs)

η(ωl)

(e

c

)4 h̄

πμ2
0ρ0

ωs

ωl
 f

(
σ±

s · σ∓
l

)2

×
∑

n,n′′

∑

m

|M±∓|2
[
h̄ωl − h̄ωs + Eρ (m, n′′) − Eρ (m, n)

]2 + 2
f

(10)

where

M±± = h̄2

2μ0ρ
2
0

∑

n′
T± (m, m ± 1) T± (m ± 1, m ± 2)

×
[

1

h̄ωs + Eρ (m, n) − Eρ (m ± 1, n′) + ia′

− 1

h̄ωl − Eρ (m, n) + Eρ (m ± 1, n′) − ib′

]

, (11)
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Figure 1. The electron states for a QWW. The solid line corresponds
to the electron state for ρ0 = 50 Å, the dashed line to the electron
state (0, 1) for ρ0 = 100 Å and the dotted line to h̄ω0

2 .

M±∓ = h̄2

2μ0ρ
2
0

∑

n′
T± (m, m ± 1) T∓ (m ± 1, m)

×
[

1

h̄ωs + Eρ (m, n) − Eρ (m ± 1, n′) + ia

− 1

h̄ωl − Eρ (m, n) + Eρ (m ± 1, n′) − ib

]

, (12)

σ±
r = er · e± and n is the order of the zero of equation (2).

4. Results and conclusions

We have calculated the differential cross-section for an
intersubband ERS process in a semiconductor quantum wire
with a magnetic field and from our results it can be observed
that four independent contributions to the differential cross-
section exist. The physical parameters used in our formulae
correspond to a system grown in a GaAs/Al0.35Ga0.65As
matrix: V0 = 0.3 eV, μ1 = 0.096 μ0, μ2 = 0.0665 μ0 and
a = b =  f = 0.001 eV [23].

In figure 1 we can observe the electron state energies for
a QWW. The unfolding of energy levels due to the magnetic
field is shown, breaking the degeneration for the m quantum
number. The gap between the (m, n) and (−m, n) states
increases with increase in the intensity of the magnetic field.
We also can observe the confinement effect in the magnetic
field ground state ( h̄ω0

2 ). With increasing magnetic field
the effect of the confinement diminishes and it practically
disappears when B = 100 T. It is clear from the figure that
there is no crossing between states with m < 0, whereas for
states with m > 0 the opposite occurs, which is because the
increase in m produces an increment of the gap between the
(m, n) and (−m, n) states. It is interesting to observe how the
increase in the intensity of the magnetic field is able to ‘take
out’ from the QWW some levels for m < 0 like (−1, 1) and
(−2, 1) and to introduce some levels for m > 0 like (3, 1) and
(4, 1).

The equations (9) and (10) have peaks when

h̄ωr
(
m ± 1, n′, m, n

) → h̄ωr = Eρ

(
m ± 1, n′) − Eρ (m, n)

and

h̄ω
(
m + α, n′′, m, n

) → h̄ωr

=
{

h̄ωs − Eρ

(
m + α, n′′) + Eρ (m, n) ; r = l

h̄ωl + Eρ

(
m + α, n′′) − Eρ (m, n) ; r = s

with α = 2 for [σ±
s · σ±

l ] polarization and α = 0 for [σ±
s · σ∓

l ]
polarization.

As can be observed, the magnetic field produces the level
splits in two different states, which is due to the fact that the
transition can only occur between consecutive states for the
quantum number m, i.e. m ′ = m ± 1, but there is no restriction
for the quantum number n. For this reason we cannot observe
peaks related to intrasubband transition. We have obtained two
types of peak because we had two different subband systems,
one for the negative values of m and another for the positive
ones. The contact between the subband system is in this case
the state m = 0, n = 1; this level corresponds to the magnetic
field ground state. The selection rules are different for the four
polarizations, and we have the transitions

[
σ−, σ−] (

m − 1, n′) → (m, n)

[
σ−, σ+] (

m − 1, n′) → (m, n)

[
σ+, σ+] (

m + 1, n′) → (m, n)

[
σ+, σ−] (

m + 1, n′) → (m, n) .

The peaks associated with these transitions are independent
of the incident photon for the emission spectra and
independent of the secondary photon for the excitation
spectra. In some previous works they were named as resonant
peaks [11, 13–15]. The other peaks are characteristic of the
excitations of the system attributed to inter-magneto-subband
single-electron excitation and are related with the following
transitions:

[
σ−, σ−] (

m − 2, n′′) → (m, n)

[
σ−, σ+]

(m, n) → (m, n)

[
σ+, σ+] (

m + 2, n′′) → (m, n)

[
σ+, σ−]

(m, n) → (m, n) .

These transitions are responsible for the increment, approxi-
mately one order of magnitude, of the Raman spectra intensity
for [σ−, σ+] and [σ+, σ−] polarizations, (see figure 2).

In figure 2 the emission spectrum for different polariza-
tions of the incident and secondary photon is shown, with
ρ0 = 50 Å and h̄ωl = 0.28 eV. The magnetic field causes the
appearance of new levels which produces new peaks that were
not observed in the previous figure. Here we can observe that
the magnetic field moves the peak of polarizations [σ−

s · σ−
l ]

4
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(a) (b)

(c) (d)

Figure 2. The emission spectra for a QWW for ρ0 = 50 Å and h̄ωl = 0.28 eV. The solid line corresponds to B0 = 1 T and the dashed line to
B0 = 20 T: (a) [σ−

s · σ−
l ]; (b) [σ−

s · σ+
l ]; (c) [σ+

s · σ+
l ] and (d) [σ+

s · σ−
l ].

and [σ−
s · σ+

l ] to bigger energy values, whereas for the polar-
izations [σ+

s · σ+
l ] and [σ+

s · σ−
l ] the peaks are displaced to

lower energy values. This behavior is due to the increase in the
gap between the negative subbands and the decrease in the gap
between the positive subbands with increasing magnetic field.
In polarizations [σ−

s · σ−
l ] and [σ+

s · σ+
l ] the peak correspond-

ing to h̄ω is not observed; this transition only takes place in the
[σ−, σ+] and [σ+, σ−] polarizations due to the selection rules
(see equations (11) and (12)).

In figure 3 the radius increases from 50 to 60 Å for B0 =
1.0 T. The result is the appearance of new peaks, because the
increased radius allows the appearance of new subbands inside
the QWW. We can also observe that the peaks obtained for
50 Å remain but they are displaced to lower energy values,
because the increased radius causes a decrease in the gap
between the subbands. These results are different from those
obtained previously in [5, 12, 16], because in these calculations
the conduction band was considered empty. By comparing
figures 2 and 3 we can conclude that the intensities of the peaks
obtained from transitions in the positive subband are bigger
than the intensities of the peaks obtained from transitions
in the negative subband; this happens because the magnetic
field diminishes the separation between the positive levels and
increases the separation between the negative ones.

The electron Raman scattering used in our work only
considers intraband transitions because the conduction bands

are partially occupied, as it corresponds to a system grown
in a GaAs/Al0.35Ga0.65As matrix. On the other hand,
interband electron Raman scattering is possible in two different
processes: interband electron Raman scattering with the
intermediate state in the conduction band, and the intermediate
state in the valence band. These processes are possible because
in the GaAs/AlAs quantum wire [6] the conduction band
is empty and the valence band is completely occupied by
electrons, and for this reason the creation of electron–hole pairs
or excitons by interband transitions is required.

The structure of the differential cross-section, as given in
the figures, provides a transparent understanding of the energy
subband structure of QWW in the presence of a magnetic field.
In summary, we have presented a formalism for the calculation
of the Raman differential cross-section for an ERS in a
semiconductor quantum wire considering an inhomogeneous
magnetic field distribution and have obtained the selection
rules for this process.

The main feature of the ERS is the appearance of a rich
spectrum with many frequencies, due to the non-equidistant
electron energy levels and the presence (absence) of a selection
rule for transitions involving changes of the m (n) quantum
number. The dependence of the differential cross-section on
the size of the QWW and the magnetic field could be used for
spectroscopic characterization of such systems. Let us finally
remark that in this work we have applied a simplified model for

5
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(a) (b)

(c) (d)

Figure 3. The emission spectra for a QWW for ρ0 = 60 Å, h̄ωl = 0.28 eV and B0 = 1 T: (a) [σ−
s · σ−

l ]; (b) [σ−
s · σ+

l ]; (c) [σ+
s · σ+

l ] and
(d) [σ+

s · σ−
l ].

the electron structure of the system. In a more realistic case we
could consider a coupled band structure by using models like
the Luttinger–Kohn or the Kane model. It can be easily proved
that the singular peaks in the differential cross-section will
be present independently of the model used for the subband
structure and may be determined whenever the values of h̄ωs

become equal to the gap between two subbands [24].
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